Exam 3
 5B1309 Algebra g.k.

26 Februari, 2006
(1) (3 pts) (motivate your answer!) Is a group G of cardinality $|G|=30$ simple? $|G|=3 \cdot 5 \cdot 2$.

Let N_{i} be the number of i-Sylow subgroups. Then $N_{2}=1,3,5,15$ and $N_{3}=1,10, N_{5}=1,6$. If one of them is one than the corresponding Sylow subgroups, being unique, will be normal in G and thus G will not be simple.

The intersection of two distinct i-Sylow subgroups ($\mathrm{i}=1,2,3$) is necesserely only the identity element, since the cardiality has to devide the prime i.

Assuming that $N_{3}=10, N_{5}=6 G$ would hane 20 distinct elements of order 3 and 24 distinct elements of order 5 , which is impossible.
We conclude that G has a normal subgroup of cardinality 3 or 5 and thus it is NON SIMPLE.
(2) (3 pts) (motivate your answer!) Find the solutions of the modular equation:

$$
15 x \equiv_{12} 27
$$

Since the g.c.d $(15,12)=3$ and 3 devides 27 , the equation has 3 distinct solutions.

We know that $[x]_{1} 5$ is a solution if and only if $[x]_{4}$ is the unique solution of

$$
5 x \equiv_{4} 9
$$

Thus $[x]_{4}=[5]_{4}^{-1}[9]_{4}=[1]_{4}^{-1}[1]_{4}=[1]_{4}$.
It follows that $[1]_{12},[1+4]_{12},[1+8]_{12}$ are the three solutions.
(3) (3 pts) Let R be a ring. An element $a \in R$ is an idempotent element if $a^{2}=a$.
Show that the only idempotent elements in an integral domain are 0 and 1 .
Assume that a is an idempotent element:

$$
a^{2}=a \Leftrightarrow a \cdot a+\left(-a \cdot 1_{R}\right)=0_{R} \Leftrightarrow a \cdot\left(a+\left(-1_{R}\right)\right)=0_{R}
$$

Since R does not have zero-divisors it is $a=0_{R}$ or $a+\left(-1_{R}\right)=0_{R}$ and thus $a=0$ or $a=1$.

